Let's start by calculating
$$Inn(D_4)$$
.
 $D_4 = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$
So we want to find g for $g \in D_4$.

Recall that the inner automorphism induced by $A \in G$ is defined as $g_a: G \rightarrow G$, $g_a(g) = a ga^{-1}$

Note that, if
$$a \in Z(G)$$
, then
 $y_a(g) = aga^{-1} = gaa^{-1} = g$ (as $ag = ga$)
So $y_a = I$ if $a \in Z(G)$

 $^{\circ}$ $Z(D_{4}) = \{R_{0}, R_{180}\} = \mathcal{D} = \mathcal{Q}_{R_{0}} = I$

Consider
$$\mathcal{R}_{270}$$
. Since $\mathcal{R}_{270} = \mathcal{R}_{90} \cdot \mathcal{R}_{180}$
So, $\mathcal{G}_{R_{270}}(9) = \mathcal{R}_{270} \cdot g \cdot \mathcal{R}_{270}^{-1}$, $g \in D_{4}$
 $= (\mathcal{R}_{90} \cdot \mathcal{R}_{180}) \cdot g \cdot (\mathcal{R}_{90} \cdot \mathcal{R}_{180})^{-1}$
 $= \mathcal{R}_{90} (\mathcal{R}_{180} \cdot g \cdot \mathcal{R}_{180}) \mathcal{R}_{90}^{-1}$
 $= \mathcal{R}_{90} \cdot g \cdot \mathcal{R}_{90}^{-1}$ (as $\mathcal{R}_{180} \in \mathbb{Z}(D_{4})$)
 $= \mathcal{G}_{R_{90}}(9)$
Lince $g \in D_{4}$ usas arbitrary $= \mathcal{D}$ $\mathcal{G}_{R_{270}} = \mathcal{G}_{R_{90}}$.
Now, $H = \mathcal{V} \cdot \mathcal{R}_{180}$ and $D = D' \cdot \mathcal{R}_{180}$
so by the same reasoning as above, $\mathcal{G}_{H} = \mathcal{G}_{V}$
and $\mathcal{G}_{D} = \mathcal{G}_{D'}$.
Now $\mathcal{G}_{R_{90}} \neq \mathbb{I}$ as $\mathcal{G}_{R_{90}}(H) = \mathcal{R}_{90} \cdot H \cdot \mathcal{R}_{90}^{-1}$

=
$$V = So \ \mathcal{P}_{R_{q_{0}}} \neq I$$
.
Also $\mathcal{P}_{R_{q_{0}}}(H) = V$ and $\mathcal{P}_{H}(V) = H \cdot V \cdot H^{-1}$
= R_{270}
= $D = \mathcal{P}_{R_{q_{0}}} \neq \mathcal{P}_{H}$.
Similarly, one can check that all of $\mathcal{P}_{R_{q_{0}}}, \mathcal{P}_{H}$
and \mathcal{P}_{D} are different = t
 $\mathcal{P}_{nn}(D_{4}) = \{I, \mathcal{P}_{R_{q_{0}}}, \mathcal{P}_{H}, \mathcal{P}_{D}\}$

Now, suppose y∈ Aut (Zn), i.e., y: Zn → Zn is an automorphism. Remember the following principle Any homomorphism / isomorphism / automorphism of a cyclic group is determined by its action on a generator.

Since Zn = <1> so y is completely determi--ned by g(1). Now g(1) E Zn must also be a generator as y is an isomorphism. But we know all the generators of Zn! $\mathbb{Z}_n = \langle a \rangle \land = \mathbb{D} \quad \text{gcd} \quad (a,n) = 1$ So, g(1) must be coprime to n. Thus, y(1) $\in U(n)$. So for any automorphism of Zn, we have an element of U(n). The next theorem says that every element of U(n) gives rise to an automorphism of \mathbb{Z}_n . In fact, $\operatorname{Aut}(\mathbb{Z}_n) \cong U(n)$ as groups.

Theorem For
$$n \in \mathbb{N}$$
, $U(n) \cong \operatorname{Aut}(\mathbb{Z}_n)$.
Proof We'll explicitly give an isomorphism b/w
Aut (\mathbb{Z}_n) and $U(n)$.

Define
$$F: \operatorname{Aut}(\mathbb{Z}_n) \longrightarrow U(n)$$
 by
 $F(g) = g(1) \quad \forall \quad g \in \operatorname{Aut}(\mathbb{Z}_n)$

F is one-one
Suppose,
$$F(g) = F(T)$$
, $g, T \in Aut(Zn)$
=> $g(I) = T(I)$
But $Z_n = \langle I \rangle$ => $g(I) = T(I)$ gives that
 $g = T$. So F is one-one.

F is onto

Let $r \in U(n)$. We want to find on element $g \in Aut(Zn)$ such that F(g) = g. Now we know that T(g) = g(1), so we want g(D = gr). So we define

$$g: \mathbb{Z}_n \to \mathbb{Z}_n$$
 by
 $g(s) = \Re mod n$

Clearly
$$g(1) = \pi$$
.
Check: $-g$ is an automorphism of \mathbb{Z}_n .
Also, $F(g) = g(1) = \pi$
 $=\pi$ F is onto.

$$\frac{F_{is} a \text{ homomorphism}}{\text{Lef} \quad \mathcal{G}, \tau \in \text{Aut}(\mathbb{Z}n). \text{ Want to check}}$$
$$F(\mathcal{G}, \tau) = F(\mathcal{G}) \cdot F(\tau)$$

$$F(y_{0}\tau) = y_{0}\tau(1) \qquad (by definition)$$

$$= y(\tau(1))$$

$$= y(1+1+\dots+1) \qquad (ao \tau(1) \in \mathbb{Z}n)$$

$$T(1)-timeo \qquad so we can write$$

$$ao sum of 1)$$

$$= y(1) + y(1) + \dots + y(1) \qquad (ao g is a)$$

$$T(1)-timeo \qquad homomorphism)$$

= g(1). T(1)

=
$$F(g) \cdot F(T)$$

So F is an isomorphism and hence
Auf $(\mathbb{Z}_n) \cong U(n)$.
So we explicitly know what Auf (\mathbb{Z}_n) is.
In the next lecture, use ill use the tools so far
to classify all groups up to isomorphism up to
order 7.